AskDefine | Define mars

Dictionary Definition

Mars

Noun

1 the 4th planet from the sun [syn: Red Planet]
2 (Roman mythology) Roman god of war and agriculture; father of Romulus and Remus; counterpart of Greek Ares

User Contributed Dictionary

see Mars

English

Pronunciation

Verb form

mars
  1. Third person singular of to mar

Dutch

Pronunciation

Noun

mars f
  1. Mars (planet)
  2. Mars (Roman god)
  3. march (formal way of walking)
  4. march (act of marching)
  5. basket (usually worn on the back like a rucksack)

Interjection

mars!
  1. march! (military command)

Related terms

Faroese

Noun

mars
  1. the month of March

French

Pronunciation

  • IPA: /maʁs/
  • SAMPA: /maRs/

Noun

  1. March (month)

See also

Icelandic

Noun

mars

Norwegian

Noun

  1. March (third month of the Gregorian calendar)

Swedish

Noun

mars
  1. March (month)

Etymology

From the Latin Martius.

Pronunciation

Noun

mars
  1. March. (month)

Extensive Definition

Mars (pronounced [ˈmɑːz] (in British English) or ) is the fourth planet from the Sun in the Solar System. The planet is named after Mars, the Roman god of war. It is also referred to as the "Red Planet" because of its reddish appearance as seen from Earth.
Mars is a terrestrial planet with a thin atmosphere, having surface features reminiscent both of the impact craters of the Moon and the volcanoes, valleys, deserts and polar ice caps of Earth. It is the site of Olympus Mons, the highest known mountain in the Solar System, and of Valles Marineris, the largest canyon. In addition to its geographical features, Mars’ rotational period and seasonal cycles are likewise similar to those of Earth.
Until the first flyby of Mars by Mariner 4 in 1965, many speculated that there might be liquid water on the planet's surface. This was based on observations of periodic variations in light and dark patches, particularly in the polar latitudes, which looked like seas and continents, while long, dark striations were interpreted by some observers as irrigation channels for liquid water. These straight line features were later proven not to exist and were instead explained as optical illusions. Still, of all the planets in our Solar System other than Earth, Mars is the most likely to harbor liquid water, and perhaps life.
Mars is currently host to three functional orbiting spacecraft: Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. This is more than any planet in the Solar System except Earth. The surface is also home to the two Mars Exploration Rovers (Spirit and Opportunity), the lander Phoenix, and several inert landers and rovers that either failed or completed missions. Geological evidence gathered by these and preceding missions suggests that Mars previously had large-scale water coverage, while observations also indicate that small geyser-like water flows have occurred in recent years. Observations by NASA's Mars Global Surveyor show evidence that parts of the southern polar ice cap have been receding.
Mars has two moons, Phobos and Deimos, which are small and irregularly shaped. These may be captured asteroids, similar to 5261 Eureka, a Martian Trojan asteroid. Mars can be seen from Earth with the naked eye. Its apparent magnitude reaches −2.9, While Mars is larger and more massive than Mercury, Mercury has a higher density. This results in a slightly stronger gravitational force at Mercury's surface. The red-orange appearance of the Martian surface is caused by iron(III) oxide, more commonly known as hematite, or rust.

Geology

Based on orbital observations and the examination of the Martian meteorite collection, the surface of Mars appears to be composed primarily of basalt. Some evidence suggests that a portion of the Martian surface is more silica-rich than typical basalt, and may be similar to andesitic rocks on Earth; however, these observations may also be explained by silica glass. Much of the surface is deeply covered by a fine iron(III) oxide dust that has the consistency of talcum powder.
Although Mars has no intrinsic magnetic field, observations show that parts of the planet's crust have been magnetized and that alternating polarity reversals of its dipole field have occurred. This paleomagnetism of magnetically susceptible minerals has properties that are very similar to the alternating bands found on the ocean floors of Earth. One theory, published in 1999 and re-examined in October 2005 (with the help of the Mars Global Surveyor), is that these bands demonstrate plate tectonics on Mars 4 billion years ago, before the planetary dynamo ceased to function and caused the planet's magnetic field to fade away.
Current models of the planet's interior imply a core region about 1,480 kilometres in radius, consisting primarily of iron with about 14–17% sulfur. This iron sulfide core is partially fluid, and has twice the concentration of the lighter elements than exist at Earth's core. The core is surrounded by a silicate mantle that formed many of the tectonic and volcanic features on the planet, but now appears to be inactive. The average thickness of the planet's crust is about 50 km, with a maximum thickness of 125 km. Earth's crust, averaging 40 km, is only a third as thick as Mars’ crust relative to the sizes of the two planets.
The geological history of Mars can be split into many epochs, but the following are the three main ones:
  • Noachian epoch (named after Noachis Terra): Formation of the oldest extant surfaces of Mars, 3.8 billion years ago to 3.5 billion years ago. Noachian age surfaces are scarred by many large impact craters. The Tharsis bulge volcanic upland is thought to have formed during this period, with extensive flooding by liquid water late in the epoch.
  • Hesperian epoch (named after Hesperia Planum): 3.5 billion years ago to 1.8 billion years ago. The Hesperian epoch is marked by the formation of extensive lava plains.
  • Amazonian epoch (named after Amazonis Planitia): 1.8 billion years ago to present. Amazonian regions have few meteorite impact craters but are otherwise quite varied. Olympus Mons formed during this period along with lava flows elsewhere on Mars.
A major geological event occurred on Mars on February 19 2008, and was caught on camera by the Mars Reconnaissance Orbiter. Images capturing a spectacular avalanche of materials thought to be fine grained ice, dust, and large blocks are shown to have detached from a high cliff. Evidence of the avalanche is present in the dust clouds left above the cliff afterwards.

Hydrology

Liquid water cannot exist on the surface of Mars with its present low atmospheric pressure, except at the lowest elevations for short periods but water ice is in no short supply, with two polar ice caps made largely of ice. In March 2007, NASA announced that the volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 metres. Additionally, an ice permafrost mantle stretches down from the pole to latitudes of about 60°. However, the morphology of this region is more consistent with the ponding of lava flows causing a superficial similarity to ice flows. These lava flows probably draped the terrain established by earlier catastrophic floods of Athabasca Valles. Significantly rough surface texture at decimeter (dm) scales, thermal inertia comparable to that of the Gusev plains, and hydrovolcanic cones are consistent with the lava flow hypothesis. easily attributable to hydrated minerals and inconsistent with the presence of near-surface ice.
More recently the high resolution Mars Orbiter Camera on the Mars Global Surveyor has taken pictures which give much more detail about the history of liquid water on the surface of Mars. Despite the many giant flood channels and associated tree-like network of tributaries found on Mars there are no smaller scale structures that would indicate the origin of the flood waters. It has been suggested that weathering processes have denuded these, indicating the river valleys are old features. Higher resolution observations from spacecraft like Mars Global Surveyor also revealed at least a few hundred features along crater and canyon walls that appear similar to terrestrial seepage gullies. The gullies tend to be in the highlands of the southern hemisphere and to face the Equator; all are poleward of 30° latitude. The researchers found no partially degraded (i.e. weathered) gullies and no superimposed impact craters, indicating that these are very young features.
In a particularly striking example (see image) two photographs, taken six years apart, show a gully on Mars with what appears to be new deposits of sediment. Michael Meyer, the lead scientist for NASA's Mars Exploration Program, argues that only the flow of material with a high liquid water content could produce such a debris pattern and colouring. Whether the water results from precipitation, underground or another source remains an open question. However, alternative scenarios have been suggested, including the possibility of the deposits being caused by carbon dioxide frost or by the movement of dust on the Martian surface.
Further evidence that liquid water once existed on the surface of Mars comes from the detection of specific minerals such as hematite and goethite, both of which sometimes form in the presence of water.
Nevertheless, some of the evidence believed to indicate ancient water basins and flows has been negated by higher resolution studies taken at resolution about 30 cm by the Mars Reconnaissance Orbiter.

Geography

Although better remembered for mapping the Moon, Johann Heinrich Mädler and Wilhelm Beer were the first "areographers". They began by establishing once and for all that most of Mars’ surface features were permanent, and determining the planet's rotation period. In 1840, Mädler combined ten years of observations and drew the first map of Mars. Rather than giving names to the various markings, Beer and Mädler simply designated them with letters; Meridian Bay (Sinus Meridiani) was thus feature "a."
Today, features on Mars are named from a number of sources. Large albedo features retain many of the older names, but are often updated to reflect new knowledge of the nature of the features. For example, Nix Olympica (the snows of Olympus) has become Olympus Mons (Mount Olympus).
Mars’ equator is defined by its rotation, but the location of its Prime Meridian was specified, as was Earth's (at Greenwich), by choice of an arbitrary point; Mädler and Beer selected a line in 1830 for their first maps of Mars. After the spacecraft Mariner 9 provided extensive imagery of Mars in 1972, a small crater (later called Airy-0), located in the Sinus Meridiani ("Middle Bay" or "Meridian Bay"), was chosen for the definition of 0.0° longitude to coincide with the original selection.
Since Mars has no oceans and hence no 'sea level', a zero-elevation surface or mean gravity surface also had to be selected. Zero altitude is defined by the height at which there is 610.5 Pa (6.105 mbar) of atmospheric pressure. This pressure corresponds to the triple point of water, and is about 0.6% of the sea level surface pressure on Earth.
The dichotomy of Martian topography is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. The surface of Mars as seen from Earth is thus divided into two kinds of areas, with differing albedo. The paler plains covered with dust and sand rich in reddish iron oxides were once thought of as Martian 'continents' and given names like Arabia Terra (land of Arabia) or Amazonis Planitia (Amazonian plain). The dark features were thought to be seas, hence their names Mare Erythraeum, Mare Sirenum and Aurorae Sinus. The largest dark feature seen from Earth is Syrtis Major.
The shield volcano, Olympus Mons (Mount Olympus), at 26 km is the highest known mountain in the Solar System. It is an extinct volcano in the vast upland region Tharsis, which contains several other large volcanoes. It is over three times the height of Mount Everest which in comparison stands at only 8.848 km.
Mars is also scarred by a number of impact craters: a total of 43,000 craters with a diameter of 5 km or greater have been found. The largest of these is the Hellas impact basin, a light albedo feature clearly visible from Earth. Due to the smaller mass of Mars, the probability of an object colliding with the planet is about half that of the Earth. However, Mars is located closer to the asteroid belt, so it has an increased chance of being struck by materials from that source. Mars is also more likely to be struck by short-period comets, i.e., those that lie within the orbit of Jupiter. In spite of this, there are far fewer craters on Mars compared with the Moon because Mars's atmosphere provides protection against small meteors. Some craters have a morphology that suggests the ground was wet when the meteor impacted.
The large canyon, Valles Marineris (Latin for Mariner Valleys, also known as Agathadaemon in the old canal maps), has a length of 4000 km and a depth of up to 7 km. The length of Valles Marineris is equivalent to the length of Europe and extends across one-fifth the circumference of Mars. By comparison, the Grand Canyon on Earth is only 446 km long and nearly 2 km deep. Valles Marineris was formed due to the swelling of the Tharis area which caused the crust in the area of Valles Marineris to collapse. Another large canyon is Ma'adim Vallis (Ma'adim is Hebrew for Mars). It is 700 km long and again much bigger than the Grand Canyon with a width of 20 km and a depth of 2 km in some places. It is possible that Ma'adim Vallis was flooded with liquid water in the past.
Images from the Thermal Emission Imaging System (THEMIS) aboard NASA's Mars Odyssey orbiter have revealed seven possible cave entrances on the flanks of the Arsia Mons volcano. The caves, named Dena, Chloe, Wendy, Annie, Abbey, Nikki and Jeanne after loved ones of their discoverers, are collectively known as the "seven sisters." Cave entrances measure from 100 m to 252 m wide and they are believed to be at least 73 m to 96 m deep. Because light does not reach the floor of most of the caves, it is likely that they extend much deeper than these lower estimates and widen below the surface. Dena is the only exception; its floor is visible and was measured to be 130 m deep. The interiors of these caverns may be protected from micrometeoroids, UV radiation, solar flares and high energy particles that bombard the planet's surface. Some researchers have suggested that this protection makes the caves good candidates for future efforts to find liquid water and signs of life.
Mars has two permanent polar ice caps: the northern one at Planum Boreum and the southern one at Planum Australe.

Atmosphere

Mars lost its magnetosphere 4 billion years ago, so the solar wind interacts directly with the Martian ionosphere, keeping the atmosphere thinner than it would otherwise be by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected these ionised atmospheric particles trailing off into space behind Mars.
The atmosphere of Mars is now relatively thin. Atmospheric pressure on the surface varies from around 30 Pa (0.03 kPa) on Olympus Mons to over 1155 Pa (1.155 kPa) in the depths of Hellas Planitia, with a mean surface level pressure of 600 Pa (0.6 kPa). This is less than 1% of the surface pressure on Earth (101.3 kPa). Mars's mean surface pressure equals the pressure found 35 km above the Earth's surface. The scale height of the atmosphere, about 11 km, is higher than Earth's (6 km) due to the lower gravity.
The atmosphere on Mars consists of 95% carbon dioxide, 3% nitrogen, 1.6% argon, and contains traces of oxygen and water.
Several researchers claim to have detected methane in the Martian atmosphere with a concentration of about 10 ppb by volume. Since methane is an unstable gas that is broken down by ultraviolet radiation, typically lasting about 340 years in the Martian atmosphere, its presence would indicate a current or recent source of the gas on the planet. Volcanic activity, cometary impacts, and the presence of methanogenic microbial life forms are among possible sources. It was recently pointed out that methane could also be produced by a non-biological process called serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars. During a pole's winter, it lies in continuous darkness, chilling the surface and causing 25–30% of the atmosphere to condense out into thick slabs of CO2 ice (dry ice). When the poles are again exposed to sunlight, the frozen CO2 sublimes, creating enormous winds that sweep off the poles as fast as 400 km/h. These seasonal actions transport large amounts of dust and water vapor, giving rise to Earth-like frost and large cirrus clouds. Clouds of water-ice were photographed by the Opportunity rover in 2004.

Climate

Of all the planets, Mars's seasons are the most Earth-like, due to the similar tilts of the two planets' rotational axes. However, the lengths of the Martian seasons are about twice those of Earth's, as Mars’ greater distance from the Sun leads to the Martian year being about two Earth years in length. Martian surface temperatures vary from lows of about −140 °C (-220 °F) during the polar winters to highs of up to 20 °C (68 °F) in summers. The wide range in temperatures is due to the thin atmosphere which cannot store much solar heat, the low atmospheric pressure, and the low thermal inertia of Martian soil.
If Mars had an Earth-like orbit, its seasons would be similar to Earth's because its axial tilt is similar to Earth's. However, the comparatively large eccentricity of the Martian orbit has a significant effect. Mars is near perihelion when it is summer in the southern hemisphere and winter in the north, and near aphelion when it is winter in the southern hemisphere and summer in the north. As a result, the seasons in the southern hemisphere are more extreme and the seasons in the northern are milder than would otherwise be the case. The summer temperatures in the south can be up to 30 °C (54 °F) warmer than the equivalent summer temperatures in the north.
Mars also has the largest dust storms in our Solar System. These can vary from a storm over a small area, to gigantic storms that cover the entire planet. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.
The polar caps at both poles consist primarily of water ice. However, there is dry ice present on their surfaces. Frozen carbon dioxide (dry ice) accumulates as a thin layer about one metre thick on the north cap in the northern winter only, while the south cap has a permanent dry ice cover about eight metres thick. The northern polar cap has a diameter of about 1,000 kilometres during the northern Mars summer, and contains about 1.6 million cubic kilometres of ice, which if spread evenly on the cap would be 2 kilometres thick. (This compares to a volume of 2.85 million cubic kilometres for the Greenland ice sheet.) The southern polar cap has a diameter of 350 km and a thickness of 3 km. The total volume of ice in the south polar cap plus the adjacent layered deposits has also been estimated at 1.6 million cubic kilometres. Both polar caps show spiral troughs, which are believed to form as a result of differential solar heating, coupled with the sublimation of ice and condensation of water vapor. Both polar caps shrink and regrow following the temperature fluctuation of the Martian seasons.

Orbit and rotation

Mars’ average distance from the Sun is roughly 230 million km (1.5 AU) and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours.
Mars's axial tilt is 25.19 degrees, which is similar to the axial tilt of the Earth. As a result, Mars has seasons like the Earth, though on Mars they are about twice as long given its longer year. Mars passed its perihelion in June 2007 and its aphelion in May 2008.
Mars has a relatively pronounced orbital eccentricity of about 0.09; of the seven other planets in the Solar System, only Mercury shows greater eccentricity. However, it is known that in the past Mars has had a much more circular orbit than it does currently. At one point 1.35 million Earth years ago, Mars had an eccentricity of roughly 0.002, much less than that of Earth today. The Mars cycle of eccentricity is 96,000 Earth years compared to the Earth's cycle of 100,000 years. However, Mars also has a much longer cycle of eccentricity with a period of 2.2 million Earth years, and this overshadows the 96,000 year cycle in the eccentricity graphs. For the last 35,000 years Mars' orbit has been getting slightly more eccentric because of the gravitational effects of the other planets. The closest distance between the Earth and Mars will continue to mildly decrease for the next 25,000 years.

Moons

Mars has two tiny natural moons, Phobos and Deimos, which orbit very close to the planet and are thought to be captured asteroids.
Both satellites were discovered in 1877 by Asaph Hall, and are named after the characters Phobos (panic/fear) and Deimos (terror/dread) who, in Greek mythology, accompanied their father Ares, god of war, into battle. Ares was known as Mars to the Romans.
From the surface of Mars, the motions of Phobos and Deimos appear very different from that of our own moon. Phobos rises in the west, sets in the east, and rises again in just 11 hours. Deimos, being only just outside synchronous orbit—where the orbital period would match the planet's period of rotation—rises as expected in the east but very slowly. Despite the 30 hour orbit of Deimos, it takes 2.7 days to set in the west as it slowly falls behind the rotation of Mars, then just as long again to rise.
Because Phobos' orbit is below synchronous altitude, the tidal forces from the planet Mars are gradually lowering its orbit. In about 50 million years it will either crash into Mars’ surface or break up into a ring structure around the planet.

Life

The current understanding of planetary habitability—the ability of a world to develop and sustain life—favors planets that have liquid water on their surface. This requires that the orbit of a planet lie within a habitable zone, which for the Sun is currently occupied by Earth. Mars orbits half an astronomical unit beyond this zone and this, along with the planet's thin atmosphere, causes water to freeze on its surface. The past flow of liquid water, however, demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the Martian surface would have been too salty and acidic to support life.
The lack of a magnetosphere and extremely thin atmosphere of Mars are a greater challenge: the planet has little heat transfer across its surface, poor insulation against bombardment and the solar wind, and insufficient atmospheric pressure to retain water in a liquid form (water instead sublimates to a gaseous state). Mars is also nearly, or perhaps totally, geologically dead; the end of volcanic activity has stopped the recycling of chemicals and minerals between the surface and interior of the planet.
Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there is still unclear. The Viking probes of the mid-1970s carried experiments designed to detect microorganisms in Martian soil at their respective landing sites, and had some apparently positive results, including a temporary increase of CO2 production on exposure to water and nutrients. However this sign of life was later disputed by many scientists, resulting in a continuing debate, with NASA scientist Gilbert Levin asserting that Viking may have found life. A re-analysis of the now 30-year-old Viking data, in light of modern knowledge of extremophile forms of life, has suggested that the Viking tests were also not sophisticated enough to detect these forms of life. The tests may even have killed a (hypothetical) life form.
At the Johnson space center lab organic compounds have been found in the meteorite ALH84001, which is supposed to have come from Mars. They concluded that these were deposited by primitive life forms extant on Mars before the meteorite was blasted into space by a meteor strike and sent on a 15 million-year voyage to Earth. Also, small quantities of methane and formaldehyde recently detected by Mars orbiters are both claimed to be hints for life, as these particles would quickly break down in the Martian atmosphere. It is possible that these compounds may be replenished by volcanic or geological means such as serpentinization.

Past missions

The first successful fly-by mission to Mars was NASA's Mariner 4, launched in 1964. The first successful objects to land on the surface were two Soviet probes, Mars 2 and Mars 3 from the Mars probe program, launched in 1971, but both lost contact within seconds of landing. Then came the 1975 NASA launches of the Viking program, which consisted of two orbiters, each having a lander; both landers successfully touched down in 1976 and remained operational for 6 and 3 years, for Viking 1 and Viking 2 respectively. The Viking landers relayed the first color pictures of Mars and also mapped the surface of Mars so well that the images are still sometimes used to this day.
The Soviet probes Phobos 1 and 2 were sent to Mars in 1988 to study Mars and its two moons. Phobos 1 lost contact on the way to Mars. Phobos 2, while successfully photographing Mars and Phobos, failed just before it was set to release two landers on Phobos's surface.
Following the 1992 failure of the Mars Observer orbiter, NASA launched the Mars Global Surveyor in 1996. This mission was a complete success, having finished its primary mapping mission in early 2001. Contact was lost with the probe in November 2006 during its third extended program, spending exactly 10 operational years in space. Only a month after the launch of the Surveyor, NASA launched the Mars Pathfinder, carrying a robotic exploration vehicle Sojourner, which landed in the Ares Vallis on Mars. This mission was also successful, and received much publicity, partially due to the many images that were sent back to Earth.

Current missions

The most recent mission to Mars, not counting the brief flyby by the Dawn spacecraft to Ceres and Vesta, is the NASA Phoenix Mars lander, which launched August 4 2007 and arrived on the north polar region of Mars on May 25 2008. The lander has a robotic arm with a 2.5 m reach and capable of digging a meter into the Martian soil. The lander will be in an area with an 80% chance of ice being less than 30 cm below the surface, and has a microscopic camera capable of resolving to one-thousandth the width of a human hair.

Future missions

Phoenix will be followed by the Mars Science Laboratory in 2009, a bigger, faster (90 m/h), and smarter version of the Mars Exploration Rovers. Experiments include a laser chemical sample that can deduce the make-up of rocks at a distance of 13 m.
The joint Russian and Chinese Phobos-Grunt sample-return mission, to return samples of Mars's moon Phobos, is scheduled for a 2009 launch. In 2012 the ESA plans to launch its first Rover to Mars, the ExoMars rover will be capable of drilling 2 m into the soil in search of organic molecules.
The Finnish-Russian MetNet mission will consist of sending tens of small landers on the Martian surface in order to establish a wide-spread surface observation network to investigate the planet's atmospheric structure, physics and meteorology. A precursor mission using 1-2 landers is scheduled for launch in 2009 or 2011. One possibility is a piggyback launch on the Russian Phobos Grunt mission. Other launches will take place in the launch windows extending to 2019.
Manned Mars exploration by the United States has been explicitly identified as a long-term goal in the Vision for Space Exploration announced in 2004 by US President George W. Bush. NASA and Lockheed Martin have begun work on the Orion spacecraft, formerly the Crew Exploration Vehicle, which is currently scheduled to send a human expedition to Earth's moon by 2020 as a stepping stone to an expedition to Mars thereafter.
The European Space Agency hopes to land humans on Mars between 2030 and 2035. This will be preceded by successively larger probes, starting with the launch of the ExoMars probe and a Mars Sample Return Mission.
On September 28, 2007, NASA administrator Michael D. Griffin stated that NASA aims to put a man on Mars by 2037: in 2057, we should be celebrating 20 years of man on Mars.

Astronomy on Mars

With the existence of various orbiters, landers, and rovers, it is now possible to study astronomy from the Martian skies. The Earth and the Moon are easily visible while Mars’ moon Phobos appears about one third the angular diameter of the full Moon as it appears from Earth. On the other hand Deimos appears more or less star-like, and appears only slightly brighter than Venus does from Earth.
There are also various phenomena well-known on Earth that have now been observed on Mars, such as meteors and auroras. A transit of the Earth as seen from Mars will occur on November 10, 2084. There are also transits of Mercury and transits of Venus, and the moon Deimos is of sufficiently small angular diameter that its partial "eclipses" of the Sun are best considered transits (see Transit of Deimos from Mars).

Viewing

To the naked-eye, Mars usually appears a distinct yellow, orange, or reddish color, and varies in brightness more than any other planet as seen from Earth over the course of its orbit. The apparent magnitude of Mars varies from +1.8 at conjunction to as high as -2.9 at perihelic opposition.
The point of Mars’ closest approach to the Earth is known as opposition. The length of time between successive oppositions, or the synodic period, is 780 days. Because of the eccentricities of the orbits, the times of opposition and minimum distance can differ by up to 8.5 days. The minimum distance varies between about 55 and 100 million km due to the planets' elliptical orbits. The orbital changes of Earth and Mars are making the approaches nearer: the 2003 record will be bettered 22 times by the year 4000.

Historical observations

The history of observations of Mars is marked by the oppositions of Mars, when the planet is closest to Earth and hence is most easily visible, which occur every couple of years. Even more notable are the perihelic oppositions of Mars which occur about every 15–17 years, and are distinguished because Mars is close to perihelion, making it even closer to Earth. Aristotle was among the first known writers to describe observations of Mars, noting that, as it passed behind the Moon, it was farther away than was originally believed.
The only occultation of Mars by Venus observed was that of October 3, 1590, seen by M. Möstlin at Heidelberg.
In 1609, Mars was viewed by Galileo, who was first to see it via telescope.
By the 19th century, the resolution of telescopes reached a level sufficient for surface features to be identified. In September 1877, a perihelic opposition of Mars occurred on September 5. In that year, Italian astronomer Giovanni Schiaparelli, then in Milan, used a 22 cm telescope to help produce the first detailed map of Mars. These maps notably contained features he called canali, which were later shown to be an optical illusion. These canali were supposedly long straight lines on the surface of Mars to which he gave names of famous rivers on Earth. His term was popularly mistranslated as canals.
Influenced by the observations the orientalist Percival Lowell founded an observatory which had a 300 and 450 mm telescope. The observatory was used for the exploration of Mars during the last good opportunity in 1894 and the following less favorable oppositions. He published several books on Mars and life on the planet, which had a great influence on the public. The canali were also found by other astronomers, like Henri Joseph Perrotin and Louis Thollon in Nice, using one of the largest telescopes of that time.
The seasonal changes (consisting of the diminishing of the polar caps and the dark areas formed during Martian summer) in combination with the canals lead to speculation about life on Mars, and it was a long held belief that Mars contained vast seas and vegetation. The telescope never reached the resolution required to give proof to any speculations. However, as bigger telescopes were used, fewer long, straight canali were observed. During an observation in 1909 by Flammarion with a 840 mm telescope, irregular patterns were observed, but no canali were seen.
Even in the 1960s articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars. Detailed scenarios for the metabolism and chemical cycles for a functional ecosystem have been published.
It was not until spacecraft visited the planet during NASA's Mariner missions in the 1960s that these myths were dispelled. The results of the Viking life-detection experiments started an intermission in which the hypothesis of a hostile, dead planet was generally accepted.
Some maps of Mars were made using the data from these missions, but it was not until the Mars Global Surveyor mission, launched in 1996 and operated until late 2006, that complete, extremely detailed maps were obtained. These maps are now available online.

Mars in culture

Historical connections

Mars is named after the Roman god of war. In Babylonian astronomy, the planet was named after Nergal, their deity of fire, war, and destruction, most likely due to the planet's reddish appearance. When the Greeks equated Nergal with their god of war, Ares, they named the planet Ἄρεως ἀστἡρ (Areos aster), or "star of Ares". Then, following the identification of Ares and Mars, it was translated into Latin as stella Martis, or "star of Mars", or simply Mars. The Greeks also called the planet Πυρόεις Pyroeis meaning "fiery". In Hindu mythology, Mars is known as Mangala (मंगल). The planet is also called Angaraka in Sanskrit, after the celibate god of war, who possesses the signs of Aries and Scorpio, and teaches the occult sciences. The planet was known by the Egyptians as "Ḥr Dšr";;;; or "Horus the Red". The Hebrews named it Ma'adim (מאדים)—"the one who blushes"; this is where one of the largest canyons on Mars, the Ma'adim Vallis, gets its name. It is known as al-Mirrikh in Arabic, and Merih in Turkish. In Urdu and Persian it is written as مریخ and known as "Merikh". The etymology of al-Mirrikh is unknown. Ancient Persians named it Bahram, the Zoroastrian god of faith and it is written as بهرام. Ancient Turks called it Sakit. The Chinese, Japanese, Korean and Vietnamese cultures refer to the planet as 火星, or the fire star, a name based on the ancient Chinese mythological cycle of Five elements.
The popular idea that Mars was populated by intelligent Martians exploded in the late 19th century. Schiaparelli's "canali" observations combined with Percival Lowell's books on the subject put forward the standard notion of a planet that was a drying, cooling, dying world with ancient civilizations constructing irrigation works.
Many other observations and proclamations by notable personalities added to what has been termed "Mars Fever". In 1899 while investigating atmospheric radio noise using his receivers in his Colorado Springs lab, inventor Nikola Tesla observed repetitive signals that he later surmised might have been radio communications coming from another planet, possibly Mars. In a 1901 interview Tesla said:
Tesla's theories gained support from Lord Kelvin who, while visiting the United States in 1902, was reported to have said that he thought Tesla had picked up Martian signals being sent to the United States. However, Kelvin "emphatically" denied this report shortly before departing America: "What I really said was that the inhabitants of Mars, if there are any, were doubtless able to see New York, particularly the glare of the electricity."
In a New York Times article in 1901, Edward Charles Pickering, director of the Harvard College Observatory, said that they had received a telegram from Lowell Observatory in Arizona that seemed to confirm that Mars was trying to communicate with the Earth.

Synonyms, Antonyms and Related Words

Agdistis, Amor, Aphrodite, Apollo, Apollon, Ares, Artemis, Ate, Athena, Bacchus, Bellona, Ceres, Cora, Cronus, Cupid, Cybele, Demeter, Despoina, Diana, Dionysus, Dis, Earth, Enyo, Eros, Gaea, Gaia, Ge, Great Mother, Hades, Helios, Hephaestus, Hera, Here, Hermes, Hestia, Hymen, Hyperion, Jove, Juno, Jupiter, Jupiter Fidius, Jupiter Fulgur, Jupiter Optimus Maximus, Jupiter Pluvius, Jupiter Tonans, Kore, Kronos, Magna Mater, Mercury, Minerva, Mithras, Momus, Neptune, Nike, Odin, Olympians, Olympic gods, Ops, Orcus, Persephassa, Persephone, Phoebus, Phoebus Apollo, Pluto, Poseidon, Proserpina, Proserpine, Rhea, Saturn, Tellus, Tiu, Tyr, Uranus, Venus, Vesta, Vulcan, Woden, Wotan, Zeus, asteroid, inferior planet, major planet, minor planet, planet, planetoid, secondary planet, solar system, superior planet, terrestrial planet, wanderer
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1